Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Mineralogical changes and associated decrease in tritiated water diffusivity after alteration of cement-bentonite interfaces

Yamaguchi, Tetsuji; Sawaguchi, Takuma; Tsukada, Manabu; Hoshino, Seiichi*; Tanaka, Tadao

Clay Minerals, 51(2), p.279 - 287, 2016/02

 Times Cited Count:7 Percentile:24.23(Chemistry, Physical)

Alteration of bentonite-cement interfaces and accompanying changes in diffusivity of tritiated water was experimentally investigated using intact hardened cement specimens. The alteration by carbonate solution was accompanied by mineralogical changes at the interface and a decrease in the diffusivity to 70% of the initial value after 180-day period. Another alteration under silicate system contacting hardened cement and compacted bentonite was accompanied by mineralogical changes at the interface and a decrease in the diffusivity to 71% of the initial value after 600-day period. The changes in the diffusivity were much less than those observed for mixed specimens of granulated hardened cement and bentonite where the diffusivity decreased down to 20% of the initial value over 180 days. The results were extrapolated to 15 years under simple assumptions and showed good agreement with those observed in the cement-argillite interface at Tournemire URL. Such an explanation enhances our confidence in our assessment of alteration of cement-bentonite systems and can be a base for using our data and models in long term assessment of radioactive waste disposal.

Oral presentation

Study of the effect on surrounding rock and groundwater from shotcrete using low alkaline cement in Horonobe URL

Nakayama, Masashi; Okamoto, Reiko*; Shirase, Mitsuyasu*

no journal, , 

In Japan, high-level radioactive waste repository will be constructed in a stable host rock formation more than 300m underground. Tunnel support is used for safety during the construction and operation, and shotcrete and concrete lining are used as the tunnel support. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. JAEA has developed a low alkaline cement, named as HFSC (Highly fly-ash contained silicafume cement), containing over 60wt% of silica-fume and coal ash. HFSC was used experimentally as the shotcrete material in construction of part of the 140m, 250m and 350m deep gallery in Horonobe URL. JAEA has been carrying out the investigation about interaction among cement, rock and groundwater using core samples of shotcrete and rock. In this report, the effect on surrounding rock and groundwater from shotcrete using HFSC is described through comparison with that from shotcrete using OPC.

2 (Records 1-2 displayed on this page)
  • 1